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Abstract

Defining orbifold projective structures on a multi-pointed compact Riemann surface, we give a necessary
and sufficient condition for the existence of such a structure. Orbifold projective structures are described
using logarithmic connections, as well as using third order holomorphic differential operators.
c© 2005 Elsevier B.V. All rights reserved.

MSC: 32C38; 14F10; 14H60

Keywords: Orbifold projective structure; Differential operator; Connection

1. Introduction

A projective structure on a Riemann surface is defined by giving a holomorphic coordinate
atlas such that all the transition functions are Möbius transformations. After fixing a theta
characteristic on a compact Riemann surface X , a projective structure gives a second order
holomorphic differential operator on X , which has the property that the monodromy of the local
system, defined by the sheaf of solutions of the differential operator, is in SL(2,C). This way,
projective structures correspond to flat SL(2,C)-bundles with a line subbundle whose second
fundamental form is an isomorphism (see [9]).

If E is the flat vector bundle of rank two over X corresponding to a projective structure
on X , then the adjoint bundle ad(E) is holomorphically identified with the second order jet
bundle J 2(T X), where T X is the holomorphic tangent bundle of X (Proposition 4.1). This way,
projective structures on X get identified with all flat (holomorphic) connections on J 2(T X)
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satisfying certain compatibility conditions with the Lie bracket operation of vector fields (see
Theorem 4.5 for the details). The local systems on X corresponding to the flat connections on
J 2(T X) that arise from projective structures on X are identified with the local systems given
by the solutions of a certain class of third order holomorphic differential operators from T X to
(T ∗ X)⊗2 (see Section 6.1).

The aim here is to systematically investigate the orbifold analog of projective structures on a
compact Riemann surface.

Let X be a compact connected Riemann surface and D ⊂ X a finite subset. For each point
ζ ∈ D, fix an integer $(ζ) ≥ 2. Fixing such a data, we define an orbifold projective structure
on X to be a covering of X by ramified covering coordinates, that is, ramified holomorphic
maps from open subsets of C to open subsets of X ramified only over D with the indices of
ramification governed by the function $ , such that all the local transition functions arise from
Möbius transformations (see Section 3.2 for the details).

In Lemma 3.2 we show that X admits an orbifold projective structure if and only if at least
one of the following three conditions holds:

(1) genus(X) ≥ 1;

(2) #D 6= 1, 2;

(3) #D = 2 and $ is a constant function.

In other words, X does not admit any orbifold projective structure if and only if all the
following three conditions hold:

(1) genus(X) = 0,

(2) #D ∈ {1, 2}, and

(3) if D = {ζ1, ζ2}, then $(ζ1) 6= $(ζ2).

A key input in the proof of Lemma 3.2 is a theorem of Bundgaard-Nielsen and Fox.
Since the line bundle T X

⊗
OX (D) over X need not admit a square-root (when #D is odd it

does not have a square-root), orbifold projective structures cannot, in general, be described by
second order differential operators between some holomorphic line bundles.

We characterize orbifold projective structures on X in terms of third order singular
holomorphic differential operators on X (Theorem 6.1). Orbifold projective structures are also
characterized in terms of logarithmic connections on X singular over D (Theorem 5.2).

In [11], ramified projective structures on X were defined using ramified coordinate maps from
open subsets of X , while here we define orbifold projective structures using ramified maps to X .
Note that given any X , if the number of ramification points is sufficiently large, then there are no
ramified projective structures on X (see [11, page 267, Theorem 3]).

When D = ∅, some of the results proved here were obtained in [7]. The present work was
also inspired by [3]. See [2] for generalizations of projective structures.

In [10], the uniformization of a compact Riemann surface was investigated using Higgs
bundles (see [10, Section 11]). In [6] (also in [13]), a similar study was carried out for orbifold
Riemann surfaces. A projective structure on a Riemann surface X of genus at least two gives an
irreducible flat connection of rank two on X . Therefore, a projective structure on X gives Higgs
bundle over X of rank two (see [10]). It would be interesting to identify all the Higgs bundles
over X that arise this way.
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2. Jet bundles and differential operator

2.1. Jet bundle

Let X be a compact connected Riemann surface. The self-product X × X will be denoted by
Z . Let

∆ ⊂ Z

be the (reduced) diagonal divisor in the complex surface Z consisting of all points of the form
(x, x). Let

pi : Z −→ X,

i = 1, 2, denote the projection of X × X to the i-th factor of the Cartesian product.

Notation. For a complex manifold Y , the sheaf of holomorphic functions on it will be denoted
by OY , and for a divisor D on Y , the holomorphic line bundle over Y defined by D will be
denoted by OY (D).

Since ∆ is an effective divisor on Z , for any holomorphic vector bundle V over Z and any
integer i ≥ 1, the coherent sheaf defined by the holomorphic sections of V is naturally a subsheaf
of the coherent sheaf defined by the sections of V

⊗
OZ
OZ (i∆).

Let E be a holomorphic vector bundle over X . For any integer k ≥ 0, the k-th order jet bundle
of E , denoted by J k(E), is defined to be the following direct image on X :

J k(E) := p1∗

(
p∗

2 E

p∗

2 E ⊗OX×X (−(k + 1)∆)

)
.

So J k(E) is a holomorphic vector bundle of rank (k + 1) · rank(E) over X .
Let K X denote the holomorphic cotangent bundle of X . For any k ≥ 0, let

fO,k : K ⊗k
X −→ J k(OX )

be the homomorphism defined as follows. Take a point x ∈ X and a holomorphic function f
defined on some analytic open subset of X containing x with f (x) = 0. The homomorphism
fO,k(x) sends the tensor power (d f )⊗k(x) ∈ (K ⊗k

X )x to the element in J k(OX )x defined by
the function ( f )k/k!. To see that this homomorphism is well defined, note that for any two
holomorphic functions f and g defined around x with f (x) = 0 = g(x) and d f (x) = dg(x),
the function f − g vanishes of order at least two at x .

The inclusion of OZ (−(k + 1)∆) in OZ (−k∆) induces an exact sequence of vector bundles

0 −→ K ⊗k
X ⊗ E −→ J k(E) −→ J k−1(E) −→ 0 (2.1)

over X . The above homomorphism K ⊗k
X ⊗E −→ J k(E) is constructed using the homomorphism

fO,k defined above. More precisely, for any (d f )⊗k(x) ∈ (K ⊗k
X )x , where f , as above, is a

holomorphic function defined around x with f (x) = 0, and for any e ∈ Ex in the fiber of E
over x , the image of (d f )⊗k(x) ⊗ e by the inclusion map in (2.1) is the element in J k(E)x
representing the locally defined section f · ê of E , where ê is a holomorphic section of E defined
around x with ê(x) = e. It is easy to check that this element of J k(E)x does not depend on the
choice of the local section ê extending e.
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2.2. Differential operators

Let E and F be two holomorphic vector bundles over X . The sheaf of differential operators
of order k from E to F , which is denoted by Diff k

X (E, F), is defined as

Diff k
X (E, F) := Hom(J k(E), F) = J k(E)∗ ⊗ F. (2.2)

Consider the composition

σ : Diff k
X (E, F) = J k(E)∗ ⊗ F −→ (K ⊗k

X ⊗ E)∗ ⊗ F (2.3)

where the right-hand side homomorphism is IdF tensored with the dual of the injective
homomorphism in (2.1). This homomorphism σ is known as the symbol map. So we have an
exact sequence of vector bundles

0 −→ Diff k−1
X (E, F) −→ Diff k

X (E, F)
σ

−→ (K ⊗k
X ⊗ E)∗ ⊗ F −→ 0 (2.4)

which is obtained from (2.1).
We will now give an alternative description of the differential operators.
For any n ≥ 0, consider the quotient (coherent) sheaf

F(n) :=
p∗

2 K X ⊗OZ ((n + 1)∆)
p∗

2 K X

over Z . So F(n) is supported over the nonreduced divisor (n + 1)∆.
Let U ⊂ X be an analytic open subset and z : U −→ C a holomorphic coordinate function

on it. We have a homomorphism of sheaves

δU (n) : F(n)|p−1
1 (U ) −→ OU

which is defined as follows: for any holomorphic section

s =
f (z1, z2)

(z2 − z1)n+1 dz2 ∈ Γ (U × U ;F(n))

over U × U , where (z1, z2) is the coordinate function on U × U defined by (z1, z2)(u1, u2) =

(z(u1), z(u2)) ∈ C2, set

δU (n)(s)(x) :=
1
n!

∂n f

∂zn
2
(x, x)

for any x ∈ U . It is straight-forward to check that this homomorphism δU (n) does not
depend on the choice of the coordinate function z on U . Consequently, these locally defined
homomorphisms δU (n) patch together compatibly to define a global homomorphism

δ(n) : p1∗F(n) −→ OX (2.5)

of vector bundles over X .
Let E and F be two holomorphic vector bundles over X . Define the coherent sheaf

F(E, F; n) :=
p∗

1 F ⊗ p∗

2(K X ⊗ E∗)⊗OZ ((n + 1)∆)
p∗

1 F ⊗ p∗

2(K X ⊗ E∗)
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over Z . So F(E, F; n) is again supported over the nonreduced divisor (n + 1)∆, and it is
identified with the direct image ι∗ι∗(p∗

1 F
⊗

p∗

2(K X
⊗

E∗)
⊗
OZ ((n + 1)∆)), where ι is the

inclusion of (n + 1)∆ in Z .
There is a natural isomorphism

K : H0((n + 1)∆,F(E, F; n)) −→ H0(X,Diff n
X (E, F)). (2.6)

To construct the isomorphism in (2.6), take any κ ∈ H0((n + 1)∆,F(E, F; n)), and let u be a
holomorphic section of E defined over an open subset U of X . So the contraction 〈κ, p∗

2u〉 is a
section of p∗

1 F
⊗
F(n) over p−1

1 (U ); the contraction used here is the natural pairing of E with
E∗. Therefore, using the projection formula p1∗ p∗

1 F = F
⊗
(p1∗OZ ) = F we have

δ(n)(〈κ, p∗

2u〉) ∈ Γ (U ; F),

where the homomorphism δ(n) is defined in (2.5). Finally, define the homomorphism K in (2.6)
to be

K(κ)(u) = δ(n)(〈κ, p∗

2u〉).

The homomorphism K constructed this way is clearly an isomorphism.
The Poincaré adjunction formula says that the restriction of the line bundle OZ (∆) to the

divisor ∆ is identified with

N∆
∼= T∆ ∼= (p∗

i T X)|∆

where N∆ is the normal bundle to ∆ and T∆ is the (holomorphic) tangent bundle of ∆. Note
that the isomorphism of T∆ with N∆ depends on the ordering of X × X ; the flip isomorphism
(x, y) 7−→ (y, x) corresponds to multiplying the isomorphism N∆

∼= T∆ with −1 (see [3, page
1315]). Now, the inclusion ∆ ↪→ (n + 1)∆ defines a projection

F(E, F; n) −→ Hom(E, F)⊗ (T X)⊗n

where the vector bundle Hom(E, F)⊗(T X)⊗n over X is considered as a sheaf supported over the
reduced diagonal ∆ ⊂ Z using the natural identification of X with ∆ defined by x 7−→ (x, x).
Combining this projection with K−1 in (2.6) we get a homomorphism

H0(X,Diff n
X (E, F)) −→ H0(X,Hom(E, F)⊗ (T X)⊗n). (2.7)

This homomorphism coincides with the symbol homomorphism σ defined in (2.3).
Consider the de Rham differential (exterior derivative)

d : OX −→ K X (2.8)

which is a differential operator of order one. Using the isomorphism in (2.6), the differential
operator d gives a section

ϕdr ∈ Γ (2∆; p∗

1 K X ⊗ p∗

2 K X ⊗OZ (2∆)) (2.9)

over the nonreduced diagonal 2∆. Using the Poincaré adjunction formula, the line bundle
(p∗

1 K X
⊗

p∗

2 K X
⊗
OZ (2∆))|∆ is canonically trivialized. Since the symbol of the differential

operator d is the constant function 1, the restriction of ϕdr to ∆ coincides with the constant
function 1 (in terms of the canonical trivialization of p∗

1 K X ⊗ p∗

2 K X ⊗OZ (2∆) over ∆).



2350 I. Biswas / Journal of Geometry and Physics 56 (2006) 2345–2378

3. Logarithmic connection and orbifold projective structure

3.1. Logarithmic connection

Let

D :=

∑̀
i=1

ζi

be a reduced divisor on the compact Riemann surface X . So ζi are distinct ` points on X . We do
not assume that ` 6= 0.

Let E be a holomorphic vector bundle over X . A logarithmic connection on E singular over
D is a first order differential operator

∇ : E −→ K X ⊗OX (D)⊗ E

satisfying the Leibniz identity which says that

∇( f s) = f ∇(s)+ d f ⊗ s

where s (respectively, f ) is any locally defined holomorphic section of E (respectively,
holomorphic function over X ). Note that any logarithmic connection on a Riemann surface is
automatically flat as there are no nonzero holomorphic 2-forms on it.

The above condition that ∇ satisfies the Leibniz identity is clearly equivalent to the condition
that the symbol of the differential operator ∇ coincides with

IdE ∈ H0(X,OX (D)⊗ End(E)),

where IdE denotes the identity automorphism of E .
Let v ∈ Eζi be a vector in the fiber of E over ζi ∈ D. Let v̂ be any holomorphic section of E

defined around ζi such that v̂(ζi ) = v. Consider

∇ (̂v )(ζi ) ∈ (K X ⊗OX (D))ζi ⊗C Eζi = C ⊗C Eζi = Eζi

with (K X
⊗
OX (D))ζi being identified with C using the Poincaré adjunction formula. Note that

if v = 0, then ∇ (̂v ) is a (locally defined) section of K X
⊗

E . So, in that case the evaluation
∇ (̂v )(ζi ) ∈ Eζi vanishes. Using this it follows that ∇ (̂v )(ζi ) is independent of the choice of the
section v̂ extending v. Consequently, we have a well-defined endomorphism

Res(∇, ζi ) ∈ End(Eζi )

that sends any v ∈ Eζi to ∇ (̂v )(ζi ). This endomorphism Res(∇, ζi ) is called the residue of the
logarithmic connection ∇ at the point ζi .

Take a point

x0 ∈ X ′
:= X \ D

in the complement, and let γi ∈ π1(X ′, x0) be an element defined by a positively oriented loop
around ζi . In other words, take a smooth orientation preserving diffeomorphism f of the closed
unit disk in C to X ′

∪ {ζi } such that f (1) = x0 and f (0) = ζi . The image, under the map f , of
the unit circle in C with its anti-clockwise orientation represents γi . Let

Ai ∈ End(Ex0)



I. Biswas / Journal of Geometry and Physics 56 (2006) 2345–2378 2351

be the monodromy of the flat connection ∇ for γi . This automorphism Ai is conjugate to
exp(−2π

√
−1Res(∇, ζi )), that is, there is an isomorphism of Ex0 with Eζi that takes Ai to

exp(−2π
√

−1Res(∇, ζi )) [8, page 79, Proposition 3.11].
Consider the vector bundle Diff 1

X (E, E) over X . The exact sequence (2.4) becomes

0 −→ End(E) −→ Diff 1
X (E, E)

σ
−→ T X ⊗ End(E) −→ 0 (3.1)

where T X is the holomorphic tangent bundle of X . The vector bundle T X
⊗
OX

End(E) has a
holomorphic line subbundle defined by T X

⊗
C IdE , which is identified with T X . Let

f0 : T X ⊗OX (−D) −→ T X (3.2)

be the natural inclusion homomorphism. The vector bundle

At(E) := σ−1( f0(T X ⊗OX (−D))⊗ IdE ) ⊂ Diff 1
X (E, E)

is called the Atiyah bundle, where f0 and σ are defined in (3.2) and (3.1) respectively [1]. So
(3.1) gives an exact sequence

0 −→ End(E) −→ At(E) −→ T X ⊗OX (−D) −→ 0 (3.3)

which is known as the Atiyah exact sequence.
Giving a logarithmic connection on a holomorphic vector bundle E is equivalent to giving a

holomorphic splitting of the Atiyah exact sequence constructed in (3.3). Indeed, a splitting of
the Atiyah exact sequence gives a homomorphism from T X

⊗
OX (−D) to Diff 1

X (E, E). This
homomorphism using the natural isomorphism

Diff 1
X (E, E)⊗ (T X ⊗OX (−D))∗ ∼= Diff 1

X (E, K X ⊗OX (D)⊗ E)

gives a differential operator defining a logarithmic connection on E . Therefore, a logarithmic
connection on E is a holomorphic splitting of the Atiyah exact sequence.

Consider the holomorphic section over 2∆ given by (2.6) for a differential operator defining a
logarithmic connection on E . Contracting this section with the dual of the section in (2.9) we get
a section of p∗

1(OX (D)
⊗

E)
⊗

p∗

2 E∗ over 2∆. Using this construction, giving a logarithmic
connection on E is equivalent to giving a section of p∗

1(OX (D)
⊗

E)
⊗

p∗

2 E∗ over 2∆ whose
restriction to ∆ coincides with the section defined by IdE . This description of a logarithmic
connection is due to A. Grothendieck.

Now we will recall the definition of a second fundamental form.
Let E be a holomorphic vector bundle over X equipped with a logarithmic connection ∇ and

F a holomorphic subbundle of E . Consider the composition

F ↪→ E
∇

−→ K X ⊗OX (D)⊗ E
Id⊗q
−→ K X ⊗OX (D)⊗ (E/F)

where q is the natural projection of E to E/F . The Leibniz identity ensures that the above
composition homomorphism is OX -linear. In other words, we have a homomorphism of vector
bundles

S(∇, F) ∈ H0(X,Hom(F, K X ⊗OX (D)⊗ (E/F))) (3.4)

over X . This homomorphism S(∇, F) is called the second fundamental form of the subbundle F
for the connection ∇.
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3.2. Orbifold projective structure

Fix a function

$ : D −→ N+
\ {1}, (3.5)

from the given subset D ⊂ X .
Let {Ui }i∈I be a covering of X by connected open subsets. Assume that #D∩Ui ≤ 1 for each

i ∈ I , that is, each Ui contains at most one point from D. If D ∩ Ui = ∅, by a holomorphic
coordinate function on Ui we will mean an injective holomorphic map φi from an open subset
of CP1 to Ui , that is, a holomorphic isomorphism

φi : Vi −→ Ui ,

where Vi is a connected open subset of CP1. If D ∩ Ui = ζ j , then by a holomorphic coordinate
function on Ui we will mean a holomorphic Galois (ramified) covering map

φi : Vi −→ Ui (3.6)

from some connected open subset Vi ⊂ CP1 such that

(1) the degree of φi is $(ζ j ), where $ is the function in (3.5);
(2) the Galois group of the covering φi is the cyclic group Z/$(ζ j )Z;
(3) the map φi is unramified over Ui \ {ζ j }, and it is totally ramified over ζ j (the inverse image

of ζ j is a single point).

Recall that the Möbius group PSL(2,C) is the group of all holomorphic automorphisms
of CP1. An orbifold projective structure on X is defined by giving a covering {Ui , φi }i∈I by
holomorphic coordinate functions (defined above) such that

(1) if D∩Ui = ζ j , then each deck transformation of the Galois covering map φi in (3.6) coincides
with the restriction of a Möbius transformation to Vi ;

(2) for each pair i, i ′ ∈ I and every connected simply connected open subset V ⊂ φ−1
i ′ ((Ui ∩

Ui ′) \ D), each branch of φ−1
i ◦ φi ′ over V coincides with the restriction of some Möbius

transformation.

By a branch of φ−1
i ◦ φi ′ we mean a holomorphic function f : V −→ CP1 such that

φi ′ = φi ◦ f on V .
Note that the second condition actually implies the first condition by setting i = i ′. The first

condition implies that if one branch of φ−1
i ◦ φi ′ over V coincides with the restriction of some

Möbius transformation, then every branch of φ−1
i ◦ φi ′ over V coincides with the restriction of

some Möbius transformation.

Definition 3.1. Two such data {Ui , φi }i∈I and {Ui , φi }i∈I ′ satisfying all the above conditions are
called equivalent if their union {Ui , φi }i∈I∪I ′ also satisfies all the above conditions. An orbifold
projective structure on X is an equivalence class of such data.

If D = ∅, then an orbifold projective structure on X is called a projective structure (see [9,8]).
The following lemma says when X admits an orbifold projective structure.

Lemma 3.2. If ` := #D = 0 (that is, D = ∅), then X admits an orbifold projective structure.
If ` ≥ 1, then X admits an orbifold projective structure if and only if at least one of the

following three conditions holds:
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(1) genus(X) ≥ 1;
(2) ` ≥ 3 and genus(X) = 0;
(3) ` = 2, genus(X) = 0 and $(ζ1) = $(ζ2).

In other words, X does not admit an orbifold projective structure if and only if either
genus(X) = 0 = `− 1, or genus(X) = 0 = `− 2 with $(ζ1) 6= $(ζ2).

Proof. The uniformization theorem says that the universal cover X̃ of X is biholomorphic
to either C or CP1 or the upper half plane H. Consequently, the group of all holomorphic
automorphisms Aut(X̃) is contained in PSL(2,C) = Aut(CP1). Therefore the uniformization
theorem gives a natural projective structure on X if ` = 0.

Assume that ` ≥ 1, and also assume that one of the three conditions in the statement of the
lemma holds. Under this assumption, a theorem due to Bundgaard-Nielsen and Fox says that
there is a finite Galois covering

γ : Y −→ X (3.7)

such that γ is ramified exactly over the divisor D and, furthermore, the order of ramification over
each point ζi ∈ D is $(ζi ) [12, page 26, Proposition 1.2.12]. A clarification about Proposition
1.2.12 of [12] is needed. The way Proposition 1.2.12 of [12] is stated it seems to mean that the
order of ramification over each ζi is a multiple of $(ζi ). However, the proof of the proposition
shows that the order of ramification over each ζi is exactly$(ζi ). See the last three lines in page
27 of [12]; from there it follows that the order of ramification over any ζi is $(ζi ).

Fix a projective structure P on the compact Riemann surface Y in (3.7). For any holomorphic
automorphism F of Y , the pullback F∗ P is a projective structure on Y . We know that the space
of all projective structures on Y is an affine space for the vector space of all quadratic differentials
H0(Y, K ⊗2

Y ) over Y [9, page 170, Theorem 19], [8, page 32, Proposition 5.8].
Let

G := Gal(γ )

be the Galois group for the covering γ in (3.7). Consider the convex combination

P :=

∑
F∈G

F∗ P

#G
(#G is the order of G), where the average is defined using the convex structure of the space of all
projective structures on Y . This projective structure P on Y is clearly left invariant by the action
of G on Y . We will construct an orbifold projective structure on X using P .

Let U be a connected simply connected open subset of Y left invariant by the action of G on
Y and

φ : V −→ U

a holomorphic isomorphism with V ⊂ CP1 compatible with the projective structure P on Y .
Consider the composition

γ ◦ φ : V −→ γ (U ) ⊂ X.

All functions of the form γ ◦ φ obtained this way combine together to define an orbifold
projective structure on X . Indeed, that they define an orbifold projective structure on X is an
immediate consequence of the facts that P is left invariant by the action on Y of the Galois group
G and γ is ramified exactly over D with $(ζi ) as the order of ramification over each ζi ∈ D.
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If genus(X) = 0 and ` = 1, then the complement X ′
:= X \ D is simply connected. So, in

that case if P is an orbifold projective structure on X , then there is a holomorphic coordinate
function compatible with P that defines an isomorphism of X ′ with C := CP1

\ {∞}. Therefore,
this holomorphic coordinate function extends to a holomorphic map from CP1 to X which is
ramified exactly over ζ1 = D with the order of ramification being $(ζ1). Since such a map
does not exist (recall that $(ζ1) > 1), we conclude that X does not admit an orbifold projective
structure.

If genus(X) = 0 and ` = 2, then π1(X ′) = Z. Hence the simple loops around ζ1 and ζ2 are
homotopic (with opposite orientation). From this it follows that if X admits an orbifold projective
structure, then $(ζ1) = $(ζ2). This completes the proof of the lemma. �

Henceforth we will always assume that one of the following is valid:

(1) ` = 0;
(2) ` ≥ 1 and genus(X) ≥ 1;
(3) ` ≥ 3 and genus(X) = 0;
(4) genus(X) = 0 with ` = 2 and $(ζ1) = $(ζ2).

So, by Lemma 3.2, the Riemann surface X admits an orbifold projective structure.

Lemma 3.3. The space of all orbifold projective structures on the Riemann surface X is an
affine space for the vector space H0(X,OX (D)

⊗
K ⊗2

X ), the space of all meromorphic quadratic
differentials on X with at most simple poles at the points of the divisor D.

Proof. As was noted earlier, the space of all orbifold projective structures on the Riemann surface
X is nonempty. If ` = 0, then the lemma is well known [8, page 32, Proposition 5.8]. So assume
that ` ≥ 1.

Let P1 and P2 be two orbifold projective structures on X . So, over the complement X ′
:=

X \ D, the restrictions of P1 and P2 (to X ′) differ by a holomorphic section

θ ∈ H0(X ′, K ⊗2
X )

[8, page 32, Proposition 5.8]. We will show that θ extends to a holomorphic section of
OX (D)

⊗
K ⊗2

X over X .
Fix a covering γ as in (3.7). We will show that the orbifold projective structure Pi , i = 1, 2,

on X gives a projective structure P i on the covering surface Y . The projective structure P i is in
fact defined as done in the proof of Lemma 3.2. In other words, if φ : V −→ U is a holomorphic
coordinate function from a connected simply connected open subset V ⊂ CP1 to U ⊂ X
compatible with respect to the orbifold projective structure Pi , then φ lifts to a biholomorphic
map

φ : V −→ γ−1(U )0 ⊂ γ−1(U )

such that γ ◦ φ = φ, where γ−1(U )0 is any connected component of γ−1(U ). The existence
of such φ follows from the fact that the ramifications of γ |γ−1(U )0 and φ are identical. The

holomorphic coordinate functions φ obtained this way define the projective structure P i on Y .
From this construction of P i it is immediate that P i is left invariant by the action of the Galois
group G on Y .

So P1 and P2 differ by

θ ∈ H0(Y, K ⊗2
Y )G ⊂ H0(Y, K ⊗2

Y ),
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where H0(Y, K ⊗2
Y )G denotes the space of all quadratic differentials on Y that are invariant under

the action of G on Y . Note that over γ−1(X ′) we have θ = γ ∗θ .
Let D := {z ∈ C | |z|2 < 1} be the open unit disk and ψ(z) = zk the degree k self-map of D,

where k ≥ 1. If ω is a quadratic differential on D invariant under the action of the Galois group
Z/kZ for ψ , then ω descends, by the map ψ , to a quadratic differential with at most a simple
pole at 0. In other words, ω = ψ∗ω′, where ω′ is a meromorphic quadratic differential on D
with pole only at 0 of order at most one. Indeed, this follows immediately from the fact that an
invariant quadratic differential ω on the disk must be of the form z 7−→ f (zk)zk−2dz⊗2, where
f is a holomorphic function on D.

From the above observation it follows immediately that

H0(Y, K ⊗2
Y )G = H0(X,OX (D)⊗ K ⊗2

X ). (3.8)

In particular, the holomorphic quadratic differential θ on X ′
= X \ D extends to X as a

holomorphic section of OX (D)
⊗

K ⊗2
X . This extended section over X corresponds to θ by

the isomorphism in (3.8). Therefore, any two orbifold projective structures on X differ by a
holomorphic section of OX (D)

⊗
K ⊗2

X .
For the converse direction, we first recall that the space of all orbifold projective structures

on X is nonempty. Now, for any ω ∈ H0(X,OX (D)
⊗

K ⊗2
X ), the isomorphism in (3.8) gives

ω ∈ H0(Y, K ⊗2
Y )G , a G-invariant quadratic differential on Y . So using the affine space structure

of the space of all projective structures on Y , the projective structure P1 on Y constructed earlier
from P1 and the quadratic differential ω on Y together give a projective structure P on Y . Since
both P1 and ω are G-invariant, the projective structure P is also left invariant by the action of G
on Y . Therefore, P gives an orbifold projective structure P on X whose construction is described
in the proof of Lemma 3.2.

Sending any pair (P1, ω) to P we conclude that the space of all orbifold projective structures
on X is an affine space for the vector space H0(X,OX (D)

⊗
K ⊗2

X ). This completes the proof of
the lemma. �

The above lemma implies that the space of all orbifold projective structures on X is a complex
affine space of dimension

(1) 3(genus(X)− 1)+ #D if genus(X) > 1;
(2) #D if genus(X) = 1 and #D ≥ 1;
(3) 1 if genus(X) = 1 and #D = 0;
(4) #D − 3 if genus(X) = 0 and #D ≥ 4;
(5) 0 if genus(X) = 0 and #D ≤ 3.

4. Projective structure and connection

In this section we will describe projective structures on a compact Riemann surface using
connections. Throughout this section D will be the empty set (the zero divisor).

A holomorphic connection ∇ on a rank two holomorphic vector bundle V over X is called a
SL(2,C)-connection if the monodromy of ∇ is contained in SL(2,C). So the line bundle

∧2 V
is trivial if V admits a SL(2,C)-connection.

A SL(2,C)-structure on X is a triple (V,∇, ξ), where V of rank two holomorphic vector
bundle over X equipped with a SL(2,C)-connection ∇ and ξ ⊂ V a holomorphic line subbundle
such that the second fundamental form (defined in (3.4))

ξ −→ K X ⊗ (V/ξ)
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is an isomorphism. Since
∧2 V ∼= OX , this implies that ξ⊗2 ∼= K X , that is, ξ is a theta

characteristic on X .
A SL(2,C)-structure gives a projective structure as follows. For any connected simply

connected open subset U ⊂ X , using the connection ∇ the restricted vector bundle V |U can
be trivialized. Once we fix such a trivialization, the line subbundle ξ |U defines a holomorphic
map of U to CP1. The above condition on the second fundamental form ensures that this is an
embedding. Using these maps as coordinate charts, a projective structure on X is obtained.

Every projective structure comes from some SL(2,C)-structure. Given any projective
structure P on X , the space of all SL(2,C)-structures on X that give rise to P is in a natural
bijective correspondence with the space of all theta characteristics on X [9, page 193, Lemma
28]. The theta characteristic corresponding to a SL(2,C)-structure (V,∇, ξ) is ξ . There are
exactly 22g theta characteristics on X , where g is the genus of X .

For a SL(2,C)-structure (V,∇, ξ) as above, we have V ∼= J 1(V/ξ). To construct the
isomorphism, take any point x ∈ X and v ∈ Vx . Let sv be the unique flat section (for the
connection ∇) of V defined in a neighborhood of x such that sv(x) = v. Let v′

∈ J 1(V/ξ)x be
the vector defined by the section q(sv) of V/ξ , where q : V −→ V/ξ is the quotient map. The
isomorphism V ∼= J 1(V/ξ) is defined by sending any v to v′ constructed above.

Conversely, for any holomorphic line bundle ϑ over X with ϑ⊗2 ∼= K −1
X = T X , the jet

bundle J 1(ϑ) admits holomorphic connections with monodromy contained in SL(2,C) (note
that

∧2 J 1(ϑ) ∼= OX ). Furthermore, any SL(2,C)-connection on J 1(ϑ) defines a SL(2,C)-
structure on X , provided g 6= 1.

Although the above description of a projective structure using connection involved the choice
of a theta characteristic, the constructions can be suitably modified to get rid of such a choice.
This will be explained below.

Let ζ be a holomorphic line bundle over X with ζ⊗2 ∼= OX . The line bundle ζ has a natural
homomorphic connection ∇

ζ . A (locally defined) section s of ζ is flat with respect to ∇
ζ if and

only s ⊗ s is a constant function. Note that after fixing an isomorphism of ζ⊗2 with the trivial
line bundle, s ⊗s gives a holomorphic function; the condition that this is a constant function does
not depend on the choice of the isomorphism. This condition on ∇

ζ determines the connection
∇
ζ uniquely.
Let W be a holomorphic vector bundle over X . Using the connection ∇

ζ we have a natural
isomorphism

J i (W )⊗ ζ ∼= J i (W ⊗ ζ ) (4.1)

for each i ≥ 1. To construct this isomorphism, note that given any holomorphic section s′ of
W ⊗ ζ over a connected simply connected open subset of X , we have

s′
= s0 ⊗ s,

where s0 is a holomorphic section of W and s is a flat section of ζ . Now, s0 ⊗ s defines a section
of J i (W )

⊗
ζ . Since any two flat sections of ζ over a connected simply connected open subset of

X differ by multiplication with a constant scalar, it follows immediately that the homomorphism
J i (W

⊗
ζ ) −→ J i (W )

⊗
ζ that sends the section of J i (W

⊗
ζ ) defined by s′ to the section of

J i (W )
⊗
ζ defined by s0 ⊗ s is well defined. This homomorphism evidently is an isomorphism,

and this is the isomorphism in (4.1).
Consequently, using (4.1) we have a canonical isomorphism

End(J i (W ⊗ ζ )) ∼= End(J i (W )⊗ ζ ) = End(J i (W )).
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This isomorphism induces an isomorphism

ad(J i (W ⊗ ζ )) ∼= ad(J i (W )⊗ ζ ) = ad(J i (W )),

where ad(J i (W ⊗ ζ )) ⊂ End(J i (W ⊗ ζ )) and ad(J i (W )) ⊂ End(J i (W )) are the subbundles
defined by trace zero endomorphisms.

Consequently, for a SL(2,C)-structure (V,∇, ξ), the holomorphic vector bundle ad(V )
does not depend on the choice of the SL(2,C)-structure. More precisely, as V = J 1(V/ξ),
if (V ′,∇ ′, ξ ′) is another SL(2,C)-structure, then the vector bundle ad(V ) is canonically
isomorphic to ad(V ′).

Let V0 be a holomorphic vector bundle over X . Let ad(V0) ⊂ End(V0) be the subbundle
defined by trace zero endomorphisms. For any integer k ≥ 1, we denote by Symk(V0) the vector
bundle defined by the k-th symmetric power. If V0 is of rank two with

∧2 V0 ∼= OX , and if we fix
a trivialization of

∧2 V0, then the vector bundle Sym2(V0) is canonically isomorphic to ad(V0).
Indeed, a trivialization of

∧2 V0 gives a nowhere vanishing section s ∈ H0(X,
∧2 V ∗

0 ). Now for
any w ∈ Sym2(V0)x , we have w′

∈ ad(V0)x defined by

w′(v) = 〈〈s(x), v〉, w〉 ∈ (V0)x ,

for all v ∈ (V0)x ; here 〈−,−〉 denotes the contraction using duality pairing. The homomorphism
defined by w −→ w′ is an isomorphism of Sym2(V0) with ad(V0).

Let (V,∇, ξ) be a SL(2,C)-structure. So
∧2 V is isomorphic to the trivial line bundle over

X . Fix a trivialization of this line bundle. The above remark shows that Sym2(V ) ∼= ad(V ). The
following proposition shows that there are isomorphisms

Sym2(V ) ∼= J 2(T X) ∼= ad(V ).

Proposition 4.1. A projective structure on X induces an isomorphism of J 2(T X) with
ad(J 1(ξ∗)), where ξ is any theta characteristic on X.

Proof. Using the canonical isomorphism in (4.1) we already know that if ξ and ξ1 are two theta
characteristics on X , then ad(J 1(ξ∗)) is canonically isomorphic to ad(J 1(ξ∗

1 )).
Let W0 be a complex vector space of dimension two. Let sl(W0) ⊂ End(W0) be the subspace

of trace zero endomorphisms, which is the Lie algebra of SL(W0).
Let P(W0) be the projective line parametrizing all one-dimensional quotient spaces of W0.

Consider the induced action of SL(W0) on P(W0). Using this action, an element in the Lie algebra
sl(W0) gives a holomorphic vector field on P(W0). In other words, we have a homomorphism

f : sl(W0) −→ H0(P(W0), T P(W0)) (4.2)

which is in fact an isomorphism.
Using f in (4.2), the jet bundle J 2(T P(W0)) gets identified with the trivial vector bundle

P(W0) × sl(W0) over P(W0) with fiber sl(W0). To explain this, first note that there is a natural
homomorphism f0 from the trivial vector bundle over P(W0) with fiber H0(P(W0), T P(W0))

to the vector bundle J 2(T P(W0)). This homomorphism f0 is defined by restricting global
sections of T P(W0) to the second order infinitesimal neighborhood of points of P(W0). Since
degree(T P(W0)) = 2, a section of T P(W0) vanishing on the second order infinitesimal
neighborhood of any given point actually vanishes identically. From this it follows immediately
that the above homomorphism f0 is an isomorphism. Now using f0 ◦ f the jet bundle
J 2(T P(W0)) gets identified with the trivial vector bundle over P(W0) with fiber sl(W0), where
f is defined in (4.2).
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Let

IP : J 2(T P(W0)) −→ P(W0)× sl(W0) (4.3)

be the isomorphism of vector bundles over P(W0) constructed above.
Consider the natural action of the automorphism group

Aut(P(W0)) = PGL(W0) = GL(W0)/C∗

on P(W0). The action lifts to an action on J 2(T P(W0)) in an obvious way. Equip the vector
bundle P(W0) × sl(W0) with the diagonal action of Aut(P(W0)) with Aut(P(W0)) = PGL(W0)

acting on its Lie algebra sl(W0) through inner conjugations. The isomorphism IP in (4.3)
evidently commutes with the actions of Aut(P(W0)) on the two vector bundles.

Let OP(W0)(1) be the tautological line bundle over P(W0) whose fiber over a point of P(W0)

is the quotient line represented by the point. The jet bundle J 1(OP(W0)(1)) is identified with the
trivial vector bundle P(W0)× W0 over P(W0) with fiber W0. Indeed, we have

H0(P(W0),OP(W0)(1)) = W0,

and the isomorphism of P(W0)×W0 with J 1(OP(W0)(1)) is obtained by restricting global sections
of OP(W0)(1) to the first order infinitesimal neighborhood of any given point of P(W0).

The above isomorphism of J 1(OP(W0)(1)) with P(W0) × W0 gives an isomorphism of
ad(J 1(OP(W0)(1))) with P(W0) × sl(W0). Combining this isomorphism with the isomorphism
IP in (4.3) we obtain an isomorphism

I ′

P : J 2(T P(W0)) −→ ad(J 1(OP(W0)(1))). (4.4)

Note that GL(W0) has a natural action on OP(W0)(1). The induced action of GL(W0) on
ad(J 1(OP(W0)(1))) clearly descends to an action of PGL(W0) on ad(J 1(OP(W0)(1))). The
isomorphism in (4.4) evidently commutes with the actions of PGL(W0) on the two vector
bundles.

Fix a projective structure on X , and fix a theta characteristic ξ on X . Also, fix an isomorphism
OP(W0)(2)

∼= T P(W0). Let

φ : P(W0) ⊃ V1 −→ U1 ⊂ X

be a biholomorphism as in (3.6) compatible with the given projective structure. Fix an
isomorphism

γ : ξ∗
|U1 −→ φ∗OP(W0)(1)

such that

γ ⊗ γ = dγ : T U1 −→ φ∗T P(W0);

recall that ξ∗
⊗ ξ∗

= T X and OP(W0)(2)
∼= T P(W0). Note that there are exactly two choices,

namely ±γ , that satisfy this condition on γ .
The above isomorphism γ induces an isomorphism

J 1(γ )′ : ad(J 1(ξ∗))|U1 −→ φ∗ad(J 1(OP(W0)(1))). (4.5)

Since the differential dγ : T U1 −→ φ∗T P(W0) is an isomorphism, it induces an
isomorphism

J 2(dγ ) : J 2(T X)|U1 −→ φ∗ J 2(T P(W0)).
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Therefore, we have an isomorphism

γ̂ := (J 1(γ )′)−1φ∗ I ′

P ◦ J 2(dγ ) : J 2(T X)|U1 −→ ad(J 1(ξ∗))|U1 , (4.6)

where I ′

P and J 1(γ )′ are constructed in (4.4) and (4.5) respectively.
Since the isomorphism I ′

P in (4.4) is equivariant for the actions of PGL(W0), and any two
choices of γ differ by multiplication with ±1, it follows immediately that the isomorphism
γ̂ does not depend neither on the choice of the coordinate function φ (compatible with the
given projective structure) nor on the choice of γ . Also, γ̂ does not depend on the choice of
the isomorphism OP(W0)(2)

∼= T P(W0).
Consequently, the locally constructed isomorphisms γ̂ in (4.6) patch together compatibly to

define a global isomorphism

IX : J 2(T X) −→ ad(J 1(ξ∗))

over X . This completes the proof of the proposition. �

Let ξ be a theta characteristic on X . We noted earlier in this section that a projective structure
on X gives a holomorphic connection ∇ on J 1(ξ∗) so that (J 1(ξ∗),∇, ξ) defines a SL(2,C)-
structure. The connection ∇ on J 1(ξ∗) induces a holomorphic connection on ad(J 1(ξ∗)).

Proposition 4.2. A projective structure on X gives a holomorphic connection on the jet bundle
J 2(T X).

For a theta characteristic ξ on X, the isomorphism J 2(T X) ∼= ad(J 1(ξ∗)) constructed in
Proposition 4.1 using a projective structure P on X takes the connection on J 2(T X) to the
holomorphic connection on ad(J 1(ξ∗)) defined by P.

Proof. A projective P on X gives a holomorphic connection Dξ on J 1(ξ∗), where ξ is a theta
characteristic on X . The connection Dξ induces a connection on ad(J 1(ξ∗)), which, using the
isomorphism in Proposition 4.1, gives a holomorphic connection on J 2(T X). We need to show
that this connection on J 2(T X) does not depend on the choice of ξ .

If ξ1 is another theta characteristic on X , then ξ1 ∼= ξ
⊗
ζ , where ζ is a holomorphic line

bundle with ζ⊗2
= OX . We noted earlier that ζ has a natural holomorphic connection and

J 1(ξ∗

1 ) = J 1(ξ∗)⊗ ζ

(see (4.1)).
Consider the connection on J 1(ξ∗)

⊗
ζ defined by the connection Dξ on J 1(ξ∗) and the

natural connection on ζ . The connection Dξ1 on J 1(ξ∗

1 ) defined by the projective structure
P is sent to this connection on J 1(ξ∗)

⊗
ζ by the above isomorphism. From this it follows

immediately that the connection on

ad(J 1(ξ∗

1 )) = ad(J 1(ξ∗)⊗ ζ ) = ad(J 1(ξ∗))

constructed using Dξ coincides with the one constructed using Dξ1 . In other words, the
connection on J 2(T X) ∼= ad(J 1(ξ∗)) does not depend on the choice of ξ . This completes the
proof of the proposition. �

The map constructed in Proposition 4.2 from the space of all projective structures on X to
the space of all holomorphic connections on J 2(T X) is injective. To prove this we recall that
the projective structures on X are identified with the space of all holomorphic connections on
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the projective bundle P(J 1(ϑ)), where ϑ is a fixed line bundle with ϑ⊗2 ∼= T X . Therefore, the
space of all projective structures on X is naturally embedded into

R := Hom(π1(X),PSL(2,C))/PSL(2,C),

where the embedding sends a projective structure to the monodromy of the corresponding flat
connection on P(J 1(ϑ)). Since the adjoint action of PSL(2,C) on its Lie algebra sl(2,C) is
faithful, the map from the space of all projective structures on X to the space of all holomorphic
connections on ad(J 1(ϑ)) ∼= J 2(T X) is injective.

Our aim in the rest of this section is to identify the connections on J 2(T X) that arise from
projective structures.

Let P be a projective structure on X and D the corresponding holomorphic connection on
J 2(T X) constructed in Proposition 4.2.

Note that
∧3 J 2(T X) = OX ; it follows from (2.1). The connection on

∧3 J 2(T X) induced
by the connection D on J 2(T X) is the trivial connection, that is, the induced connection has
trivial monodromy. Indeed, this follows immediately from the fact that the connection D is
induced by a PSL(2,C)-connection on P(J 1(ϑ)) using the isomorphism in Proposition 4.1,
where ϑ∗ is a theta characteristic on X .

A holomorphic connection D0 on J 2(T X) gives an endomorphism of the vector bundle
J 2(T X). We will construct this endomorphism.

Take a point x ∈ X and a vector v ∈ J 2(T X)x in the fiber over x . Let sv be the (unique) flat
section for the connection D0 on J 2(T X) defined around a connected simply connected open
subset U ⊂ X with x ∈ U and satisfying the condition sv(x) = v. Let p(sv) be the holomorphic
section of T U , where

p : J 2(T X) −→ T X (4.7)

is the composition J 2(T X) −→ J 1(T X) −→ T X constructed using (2.1). Let

w ∈ J 2(T X)x

be the vector defined by the section p(sv). Now we have a homomorphism of vector bundles

FD0 : J 2(T X) −→ J 2(T X) (4.8)

that sends any v to w constructed above from v.
The following lemma is straight-forward.

Lemma 4.3. For the holomorphic connection D on J 2(T X) arising from a projective structure
P on X, we have FD = IdJ 2(T X), where FD is constructed in (4.8).

Proof. Consider the isomorphism of vector bundles

JP : P(W0)× H0(P(W0), T P(W0)) −→ J 2(T P(W0)) (4.9)

constructed earlier; see the construction of IP in (4.3). We recall that JP sends a vector field
on P(W0) to the restriction of it to the second order infinitesimal neighborhood of the points of
P(W0).

Note that the flat connection J 2(T P(W0)) for the standard (unique) projective structure on
P(W0) coincides with the one obtained from the trivialization of J 2(T P(W0)) defined by the
isomorphism JP in (4.9). In other words, flat sections of J 2(T P(W0)) are precisely the global
vector fields on P(W0) (by the isomorphism JP).
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Consequently, the lemma is valid for the standard projective structure on P(W0).
Since the connection D on J 2(T X) is constructed by patching together the pull backs of the

connection on J 2(T P(W0)) by holomorphic coordinate functions compatible with P , the fact
that the lemma is valid for the standard projective structure on P(W0) immediately implies that
it is also valid for the projective structure P on X . This completes the proof of the lemma. �

The connection D is compatible with the Lie bracket operation of vector fields. This will be
explained next.

As before, let D0 be any holomorphic connection on J 2(T X). Let

s, t ∈ H0(U, J 2(T U )) (4.10)

be flat sections on an open subset U ⊂ X for the connection D0. So

p(s), p(t) ∈ H0(U, T U )

are holomorphic vector fields on U , where p is the projection in (4.7). So the Lie bracket [s, t]
is a holomorphic vector field on U . Let

D̂0([s, t]) ∈ H0(U, J 2(T U )) (4.11)

be the section over U defined by the Lie bracket [p(s), p(t)].
The following lemma is also straight-forward.

Lemma 4.4. For the connection D on J 2(T X) arising from a projective structure P on X, the
section D̂([s, t]) constructed as in (4.11) using D is flat with respect to D, where s and t as in
(4.10) are flat sections with respect to D.

Proof. Since the Lie bracket of two globally defined holomorphic vector fields on P(W0) is again
a globally defined holomorphic vector field, and the isomorphism JP in (4.9) takes the connection
on J 2(T P(W0)) to the trivial connection on the trivial vector bundle P(W0) × H0(P(W0)) it
follows that the lemma is valid for the connection on J 2(T P(W0)) arising from the standard
(unique) projective structure on P(W0). Now for the same reason given in the proof of
Lemma 4.3, the fact that the lemma is valid for the projective structure on P(W0) implies that it
is valid for the projective structure P on X . This completes the proof of the lemma. �

Theorem 4.5. Let D0 be a holomorphic connection on J 2(T X). This connection corresponds
to a projective structure on X (by Proposition 4.2) if and only if the following three conditions
hold:

(1) the connection on
∧3 J 2(T X) = OX induced by D0 coincides with the trivial connection

on the trivial line bundles;
(2) the homomorphism FD0 in (4.8) is the identity automorphism of J 2(T X);
(3) for any two flat sections s, t as in (4.10) with respect to D0, the section D̂0([s, t]) in (4.11)

is also flat with respect to D0.

Proof. We noted earlier that a connection on J 2(T X) arising from a projective structure on
X induces the trivial connection on the trivial line bundle

∧3 J 2(T X). Combining this with
Lemmas 4.3 and 4.4 we conclude that a connection on J 2(T X) arising from a projective structure
on X satisfies all the three conditions in the statement of the theorem.

Let D0 be a holomorphic connection on J 2(T X) satisfying the three conditions. We will
construct a projective structure on X using D0.
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We first note that the third condition implies that the fibers of J 2(T X) are equipped with a
Lie algebra structure. To prove this, take any point x ∈ X and two vectors v,w ∈ J 2(T X)x in
the fiber over x . Let s (respectively, t) be the unique flat section of J 2(T X) defined around x , for
the connection D0, such that s(x) = v (respectively, t (x) = w). Sending the ordered pair v,w
to D̂0([s, t])(x) we get a Lie algebra structure on the fiber J 2(T X)x , where D̂0 is as in (4.10).

The Lie algebra structure on J 2(T X)x will be denoted by [−,−]. We will now show that this
three dimensional Lie algebra J 2(T X)x is isomorphic to sl(2,C).

Let

0 −→ K X −→ J 2(T X)
q

−→ J 1(T X) −→ 0 (4.12)

be the exact sequence constructed in (2.1). If ( f1(z) + z3g1(z)) ∂∂z and ( f2(z) + z3g2(z)) ∂∂z are
two vector fields defined around 0 ∈ C, where f1, f2 are polynomials of degree at most two,
then the Lie bracket[

( f1(z)+ z3g1(z))
∂

∂z
, ( f2(z)+ z3g2(z))

∂

∂z

]
=

[
f1(z)

∂

∂z
, f2(z)

∂

∂z

]
+ z2g(z)

∂

∂z

where g is a polynomial. Furthermore, given any polynomial h(z) of degree at most one, we can
find f1 and f2 as above (of degree at most two) with[

f1(z)
∂

∂z
, f2(z)

∂

∂z

]
= h(z)

∂

∂z
.

Therefore, the second condition in the theorem implies that

q([J 2(T X)x , J 2(T X)x ]) = J 1(T X)x (4.13)

for the Lie algebra structure defined on J 2(T X)x by D0, where q is the projection in (4.12). The
second condition implies that given any α ∈ J 2(T X)x , we can find a flat section sα of J 2(T X)
defined around x such that the section p(sα) restricts to α, where p is the projection in (4.7).
Hence (4.13) is valid.

On the other hand, we have[
(z + z3g1(z))

∂

∂z
, (z2

+ z3g2(z))
∂

∂z

]
= z2 ∂

∂z
+ z3g3(z)

∂

∂z
.

This, using the second condition in the theorem, immediately implies that

J 2(T X)x ⊃ kernel(q(x)) ⊂ [J 2(T X)x , J 2(T X)x ],

where q(x) is the projection in (4.12).
The inclusion kernel(q(x)) ⊂ [J 2(T X)x , J 2(T X)x ] and (4.13) together imply that J 2(T X)x

is spanned by the subset

[J 2(T X)x , J 2(T X)x ] ⊂ J 2(T X)x .

It is a straight-forward exercise to check that this implies that J 2(T X)x is isomorphic to sl(2,C).
Indeed, the facts that [J 2(T X)x , J 2(T X)x ] spans J 2(T X)x and dim J 2(T X)x = 3 together
imply that the Lie algebra J 2(T X)x does not have any nonzero nilpotent ideal.

Take any point x ∈ X . Let 0 6= v ∈ J 2(T X)x be a nonzero nilpotent element of the Lie
algebra satisfying the condition that

v 6∈ kernel(q(x)) ⊂ J 2(T X)x ,
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where q is the projection in (4.12). To show that there exists such v, note that any nonzero
nilpotent element in sl(2,C) is conjugate to the strictly upper triangular 2 × 2 matrix with 1
as the (1, 2)-th element. So the nilpotent elements constitute a one parameter family of lines in
J 2(T X)x . Therefore, there are nilpotent elements in the complement J 2(T X)x \ kernel(q(x)).

We will show that

0 6= p(x)(v) ∈ Tx X (4.14)

with p as in (4.7). For this note that for any a, b ∈ C we have[
(az + bz2

+ z3g1(z))
∂

∂z
, (z2

+ z3g2(z))
∂

∂z

]
= az2 ∂

∂z
+ z3g3(z)

∂

∂z
.

In view of the second condition in the theorem, this immediately implies that for any

w ∈ kernel(p(x))

(p is defined in (4.7)) the line

kernel(q(x)) ⊂ [J 2(T X)x , J 2(T X)x ]

(q is defined in (4.12)) is contained in an eigenspace for the adjoint action of w on J 2(T X)x ; the
adjoint action on kernel(q(x)) of the element in kernel(p(x)) defined by (az + bz2

+ z3g1(z)) ∂∂z
(with respect to a holomorphic coordinate function z around x) is multiplication by a.

Consequently, no element in the complement

kernel(p(x)) \ kernel(q(x)) ⊂ J 2(T X)x

is nilpotent. Indeed, each element in the above complement has a nonzero element in
kernel(q(x)) as an eigenvector for the adjoint action; on the other hand, the adjoint action of
a nonzero nilpotent element w ∈ sl(2,C) has exactly one eigenspace, namely the line spanned
by w.

Therefore, we conclude that (4.14) holds.
Let sv be the (unique) flat section of J 2(T X) defined around x (for the connection D0) that

satisfies the condition sv(x) = v. Since p(v) 6= 0, there is a simply connected neighborhood U
of x such that for all y ∈ U we have p(sv(y)) 6= 0. There is a unique holomorphic coordinate
function

z : U −→ C (4.15)

such that

∂

∂z
= p(sv) ∈ H0(U, T U ) (4.16)

with z(x) = 0 (we may need to shrink U to define the coordinate function).
We will construct a projective structure on X using the coordinate function defined as above

around each point of X .
For this first note that there is a unique isomorphism of Lie algebras

Fv : J 2(T X)x −→ sl(2,C) (4.17)

such that

Fv(v) = A :=

(
0 1
0 0

)
(4.18)
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and Fv(kernel(q(x))) is the line in sl(2,C) spanned by the transpose At , where A is defined in
(4.18).

Now, take any v′
∈ J 2(T X)x that satisfies the conditions for v. In other words, v′ is a nilpotent

element of the Lie algebra J 2(T X)x with

0 6= v′
6∈ kernel(q(x)).

There is a unique element

T ∈ PSL(2,C) (4.19)

which is the image of an element of the form(
a 0
b c

)
∈ SL(2,C) (4.20)

such that Ad(T )(A) := T AT −1
= Fv(v′), where Fv and A are defined in (4.17) and (4.18)

respectively.
Define sv′ exactly as sv was defined. In other words, sv′ is the (unique) flat section of J 2(T X)

defined around x (for the connection D0) such that sv′(x) = v′. Let

z′
: U −→ C

be the unique holomorphic coordinate function (as in (4.15)) around x with

∂

∂z′
= p(sv′) ∈ H0(U, T U )

(as in (4.16)) with z′(x) = 0.
Now it is straight-forward to check that

z′
= T ◦ z,

where T is defined in (4.19). In other words, if T is the image of the matrix in (4.20), then
z′

= az/(bz + c).
Since the coordinates z and z′ differ by a Möbius transformation, we get a projective structure

on any infinitesimal neighborhood of x . This projective structure is defined by z, and the
projective structure does not depend on the choice of v.

To prove that this defines a projective structure on X , we need to show that for any y ∈ Y and
a neighborhood Uy on y equipped with the projective structure constructed as above using D0,
the two projective structures on U ∩ Uy coincide.

To prove this, consider the vector field p(sv) on U (see (4.16)). If instead of z we take another
holomorphic coordinate function z1 as in (4.15) satisfying the condition (4.16) but with z1(x) = c
which need not be zero, then clearly,

z1 = z + c.

Now z −→ z+c is also a projective transformation. In other words, both the coordinate functions
z1 and z define the same projective structure on a neighborhood of x . Also, a composition of
projective transformations is also a projective transformation. Consequently, the locally defined
projective structures patch together compatibly to define a projective structure on X .

Let P0 denote the projective structure on X constructed above from D0. It is straight-
forward to check that the connection on J 2(T X) defined by P0 using Proposition 4.2 coincides
with D0. Just note that these two connections coincide over the domain U in (4.15); both of
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these connections over U coincide with the connection on J 2(T CP1) defined by the projective
structure on T CP1.

If D0 is defined by a projective structure P on X (using Proposition 4.2), then the projective
structure constructed (as above) from D0 clearly coincides with P . This completes the proof of
the theorem. �

In the next section, using Theorem 4.5 we will give an alternative description of an orbifold
projective structure.

5. Orbifold projective structure and connection

We now return to the general case where D =
∑`

i=1 ζi need not be the empty set.
Let J 2

D(T X) denote the kernel of the projection

J 2(T X)
p

−→ T X −→
T X

image( f0)
=

⊕̀
i=1

Tζi X, (5.1)

where f0 and p are as in (3.2) and (4.7) respectively. Therefore, we have an exact sequence of
coherent sheaves

0 −→ J 2
D(T X) −→ J 2(T X) −→

⊕̀
i=1

Tζi X −→ 0 (5.2)

over X .
From (5.1) it follows that

kernel(p) ⊂ J 2
D(T X). (5.3)

For any ζi ∈ D, let

F2
ζi

⊂ (J 2
D(T X))ζi (5.4)

be the image of the fiber (kernel(p))ζi by the inclusion homomorphism in (5.3). Now consider
the line

(K X )ζi = kernel(q(ζi )) ⊂ J 2(T X)ζi ,

where q is the projection in (4.12). The image of (K X )ζi by the homomorphism in (5.3) defines
a line

F1
ζi

⊂ F2
ζi

⊂ (J 2
D(T X))ζi (5.5)

with F2
ζi

defined in (5.4).
On the other hand, we have

J 2(T X)⊗OX OX (−D) ⊂ J 2
D(T X)

and the image of the fiber (J 2(T X)
⊗
OX
OX (−D))ζi is a line

Gζi ⊂ J 2
D(T X)ζi . (5.6)



2366 I. Biswas / Journal of Geometry and Physics 56 (2006) 2345–2378

It is easy to see that

J 2
D(T X)ζi = F2

ζi
⊕ Gζi , (5.7)

where F2
ζi

and Gζi are defined in (5.4) and (5.6) respectively.

Let ∇ be a logarithmic connection on the vector bundle J 2
D(T X) singular over the divisor D.

Let

Res(∇, ζi ) ∈ End(J 2
D(T X)ζi )

be the residue of ∇ over ζi .

Definition 5.1. We will say that a logarithmic connection ∇ on J 2
D(T X) singular over D satisfies

the residue condition if for each ζi ∈ D the following three conditions hold:

(1) the residue endomorphism Res(∇, ζi ) of the fiber J 2
D(T X)ζi preserves the decomposition in

(5.7), and Res(∇, ζi ) acts on the line Gζi as multiplication by 1/$(ζi ) (the function $ is
defined in (3.5));

(2) the endomorphism of F2
ζi

defined by Res(∇, ζi ) preserves the line F1
ζi

in (5.5), and it acts on

F1
ζi

as multiplication by ($(ζi )− 1)/$(ζi );

(3) the residue Res(∇, ζi ) induces the zero endomorphism of the quotient F2
ζi
/F1

ζi
.

Note that if ∇ satisfies the residue condition then Res(∇, ζi ) is semisimple, that is, J 2
D(T X)ζi

is generated by the eigenvectors of Res(∇, ζi ).
Let ∇ be a logarithmic connection on J 2

D(T X) singular over D. Take a point x ∈ X ′
:= X \ D

and take a vector v ∈ J 2
D(T X)x . Let sv be the (unique) locally defined flat section, for the

connection ∇, of J 2
D(T X) with sv(x) = v and defined on some connected open subset U

containing x . Let p0(sv) be the holomorphic section of T U , where

p0 : J 2
D(T X) −→ T X ⊗OX OX (−D) (5.8)

is the restriction to J 2
D(T X) of the projection p in (4.7). Let w ∈ J 2(T X)x be the vector

defined by the vector field p0(sv); note that on X ′ the two vector bundles J 2
D(T X) and

T X
⊗
OX
OX (−D) are identified with the vector bundles J 2(T X) and T X respectively.

Now we have a homomorphism of vector bundles

F∇ : J 2
D(T X) −→ J 2

D(T X) (5.9)

over X ′ that sends any v to w constructed above from v.
Similarly, as done in (4.11), given any two flat sections (for ∇)

s, t ∈ H0(U, J 2
D(T X))

defined over some open set U ⊂ X ′, The Lie bracket [p0(s), p0(t)] gives a section

D̂∇([s, t]) ∈ H0(U, J 2
D(T X)), (5.10)

where p0 is the projection in (5.8).
Since

∧3 J 2(T X) = OX , using (5.2) it follows that

3∧
J 2
D(T X) = OX (−D).
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The line bundleOX (−D) has a canonical logarithmic connection singular over D. Indeed, the de
Rham differential operator in (2.8) defines the connection operator

d : OX (−D) −→ K X .

This connection on OX (−D) is nonsingular over X ′ and its residue on each ζi ∈ D is 1.
The following theorem follows from Theorem 4.5 and the use of a covering surface.

Theorem 5.2. There is a natural bijective correspondence between the space of all orbifold
projective structures on X and the space of all logarithmic connections ∇ on J 2

D(T X) singular
over D satisfying the residue condition and also satisfying the following three conditions:

(1) the logarithmic connection on
∧3 J 2

D(T X) = OX (−D) induced by ∇ coincides with the
canonical logarithmic connection on OX (−D);

(2) the endomorphism

F∇ : J 2
D(T X)|X ′ −→ J 2

D(T X)|X ′

defined in (5.9) is the identity map;
(3) the section

D̂∇([s, t]) ∈ H0(U, J 2
D(T X))

in (5.10) is flat with respect to ∇ for any flat sections s, t ∈ H0(U, J 2
D(T X)) with U ⊂ X ′.

Proof. Consider the Galois covering γ : Y −→ X constructed in (3.7). For any i ∈ [1, `], let

yi := (γ−1(ζi ))red ⊂ Y

be the set-theoretic inverse image. Set

W := γ ∗ J 2
D(T X)⊗OY OY

(∑̀
i=1

($(ζi )− 1)yi

)
(5.11)

to be the vector bundle over Y , where $ is the function in (3.5).
For any i ∈ [1, `], consider the quotient space

Qi :=
J 2
D(T X)ζi

F1
ζi

⊕ Gζi

,

where F1
ζi

and Gζi are defined in (5.5) and (5.6) respectively. So Qi is a quotient of the sheaf

J 2
D(T X) supported on the reduced point ζi . Therefore,

Q′

i := γ−1(Qi )⊗OY OY

(∑̀
i=1

($(ζi )− 1)yi

)
is a quotient of the sheaf W (defined in (5.11)) supported over the nonreduced divisor γ−1(ζi ) =

$(ζi )yi of Y . This quotient map will be denoted by gi .
Let Q

′

i denote the restriction of the sheaf Q′

i to the subscheme

($(ζi )− 1)yi ⊂ $(ζi )yi .

So we have a natural projection

fi : Q′

i −→ Q
′

i . (5.12)
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Let

E1 ⊂ W (5.13)

be the kernel of the composition

W

∑̀
i=1

gi

−→

⊕̀
i=1

Q′

i

⊕̀
i=1

fi

−→

⊕̀
i=1

Q
′

i

(recall that gi : W −→ Q′

i is the quotient map), where fi is defined in (5.12).
Now, for any i ∈ [1, `], consider the quotient space

Gi =
J 2
D(T X)ζi

F2
ζi

,

where F2
ζi

is defined in (5.4). So Gi is a quotient sheaf of J 2
D(T X) supported on the reduced

point ζi . Therefore, as before,

G ′

i := γ−1(Gi )⊗OY OY

(∑̀
i=1

($(ζi )− 1)yi

)
is a quotient of W (defined in (5.11)) supported on $(ζi )yi . This quotient map will be denoted
by g′

i .

Let G
′

i denote the restriction of the sheaf G ′

i to the subscheme

($(ζi )− 1)yi ⊂ $(ζi )yi .

So we have a natural projection

f ′

i : G ′

i −→ G
′

i . (5.14)

Let

E2 ⊂ W (5.15)

be the kernel of the composition

W

∑̀
i=1

g′
i

−→

⊕̀
i=1

G ′

i

⊕̀
i=1

f ′
i

−→

⊕̀
i=1

G
′

i

(recall that g′

i : W −→ G ′

i is the quotient map), where f ′

i is defined in (5.14).
Finally, let

E ⊂ E1 ∩ E2 ⊂ W (5.16)

be the intersection, where E1 and E2 are defined in (5.13) and (5.15) respectively.
It may be mentioned at this point that the reason behind the above construction of E is to

ensure that for any logarithmic connection ∇ on J 2
D(T X) satisfying the residue condition and also

satisfying the three conditions in the theorem, the logarithmic connection γ ∗
∇ on γ ∗ J 2

D(T X)
defines a nonsingular connection on E . This will be explained in detail later.
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Note that over the complement Y \γ−1(D) all the vector bundles W , E1, E2 and E are naturally
identified with

γ ∗ J 2(T X)|Y\γ−1(D) = γ ∗ J 2
D(T X)|Y\γ−1(D) = J 2(T Y )|Y\γ−1(D).

Any automorphism of Y lifts naturally to J 2(T Y ). So, the action of the Galois group G on Y
lifts to an action of G on J 2(T Y ) as vector bundle automorphisms. The vector bundle γ ∗ J 2

D(T X)
being a pullback is equipped with a lift of the action of G as vector bundle automorphisms.

We need the following lemma.

Lemma 5.3. The holomorphic sections of J 2(T Y ) invariant under the action of G on J 2(T Y ),
that are defined on open subsets invariant under the action of G on Y , are identified with the
holomorphic sections of γ ∗ J 2

D(T X) invariant under the action of G on γ ∗ J 2
D(T X) that are

defined on G-invariant open subsets of Y .
For the vector bundle E constructed in (5.16), the identification

E |Y\γ−1(D) = J 2(T Y )|Y\γ−1(D)

extends to an isomorphism of E with J 2(T Y ) over Y .

Proof. To prove the first part of the lemma we note that the coherent sheaf on X that associates
to any open subset U ⊂ X the space of all G-invariant holomorphic 1-forms on γ−1(U ) is
identified with the sheaf of holomorphic 1-forms on X (see [4, page 88, Lemma 3.7]). Similarly,
the coherent sheaf on X that associates to any open subset U ⊂ X the space of all G-invariant
holomorphic vector fields on γ−1(U ) is identified with the sheaf defined by the line bundle
T X

⊗
OX (−D) over X .

To prove the above assertion, set U1 ⊂ C to be the unit disk, and consider the map

U1 −→ U1 (5.17)

defined by z 7−→ zn . The vector field z ∂
∂z on U1 is left invariant under the action of the Galois

group Z/nZ, and furthermore, all the invariant holomorphic vector fields on U1 are generated
by this one as module over invariant holomorphic functions. On the other hand, if w = zn , then
z ∂
∂z = nw ∂

∂w
.

Therefore, T X
⊗
OX (−D) coincides with the sheaf defined by (locally defined) G-invariant

vector fields on Y . The coherent sheaf on X that associates to any open subset U ⊂ X the space
of all G-invariant holomorphic functions on γ−1(U ) is identified with the sheaf defined by the
trivial line bundle on X . (See the proof of Lemma 3.3 for a similar argument.)

The action of G on J 2(T Y ) clearly preserves the filtration

KY ⊂ kernel(pY ) ⊂ J 2(T Y ),

where pY : J 2(T Y ) −→ T Y is the natural projection (defined exactly as in (4.7)) and KY is the
kernel of the projection J 2(T Y ) −→ J 1(T Y ). The action of G on KY coincides with the given
by the natural lift of automorphisms. The quotient kernel(pY )/KY is the trivial line bundle over
Y equipped with the trivial lift of the action of G on Y , that is, the group G acts diagonally on
Y × C with the action of G on C being the trivial one. The quotient J 2(T Y )/kernel(pY ) is T X
with the natural lift of the action of G to T X .

Using these observations it follows that the sheaf on X that associates to any open subset
U ⊂ X the space of all G-invariant holomorphic sections of J 2(T γ−1(U )) is identified with the
sheaf defined by the vector bundle J 2

D(T X). This proves the first part of the lemma.
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To prove the second part of the lemma we need the following observation. Consider the action
of Galois group Z/nZ for the map in (5.17) on the trivial line bundle U1 × C with U1 as in
(5.17), defined as follows: the action of the generator 1 ∈ Z/nZ sends any (z, c) ∈ U1 × C to
(exp(2π

√
−1/n)z, exp(2π

√
−1k/n)c), where k is a fixed integer in [0, n − 1]. The invariant

sections of the trivial line bundle for this action are generated by the section defined by the
function z 7−→ zk . In particular, the order of vanishing at zero of the generating section is strictly
less than n.

The above observation and the first part of the lemma together imply that

γ ∗ J 2
D(T X) ⊂ J 2(T Y ) ⊂ γ ∗ J 2

D(T X)⊗OY

(∑̀
i=1

($(ζi )− 1)yi

)
. (5.18)

In other words, J 2(T Y ) is a subsheaf of W defined in (5.11).
The following decomposition into a direct sum of line bundles

J 2(T U1) =
∂

∂z
⊗COU1 ⊕ z

∂

∂z
⊗COU1 ⊕ z2 ∂

∂z
⊗COU1

over the unit disk U1, where z is the standard coordinate on U1, is left invariant by the action of
Z/nZ considered above (the Galois group for the map z −→ zn).

Now using the earlier observation that invariant sections are generated by the function
z 7−→ zk it follows that the construction of E from W coincides with the construction of the
subsheaf J 2(T Y ) ⊂ W in (5.18). This completes the proof of the lemma. �

Remark 5.4. If a finite group Γ acts on a complex projective manifold Y1, and if E is a
holomorphic vector bundle over Y1 equipped with a lift of the action of Γ as vector bundle
automorphisms, then in [5] a construction is given to recover E from the invariant sheaf ( f∗E)Γ

and some data over ( f∗E)Γ called parabolic structure, where f is the projection of Y to Y/Γ (the
construction of [5] works under some assumptions on the ramification divisor and the restriction
of E over it). The above construction of E from J 2

D(T X) is a special case of the construction of
[5].

Continuing with the proof of the theorem, let P be an orbifold projective structure on X .
As we saw in the proof of Lemma 3.2, the orbifold projective structure P defines a projective
structure P on the covering Riemann surface Y in (3.7) which is left invariant by the action of
the Galois group G on Y .

Using Theorem 4.5, P gives a holomorphic connection ∇
′ on J 2(T Y ) which is left invariant

by the action of G on J 2(T Y ). Using the isomorphism E ∼= J 2(T Y ) in Lemma 5.3, this
connection ∇

′ defines a connection ∇
′′ on E .

Since the divisor yi ⊂ Y is left invariant by the action of the Galois group G for the covering
map γ , the line bundle OY (yi ) is equipped with a canonical lift of the action of G on Y .
Therefore, the line bundle OY (

∑`
i=1 mi yi ), where mi ∈ Z, is equipped with a lift of the action

of G. The vector bundle γ ∗ J 2
D(T X) being a pullback is also equipped with a lift of the action

of G. Therefore, W defined in (5.11) is equipped with a lift of the action of G on Y . From the
definition of E1 (respectively, E2) in (5.13) (respectively, (5.15)) it follows immediately that the
action of G on W leaves the subsheaf E1 (respectively, E2) invariant. In other words, both E1 and
E2 have an induced action of G. Therefore, the action of G on W leaves E = E1 ∩ E2 in (5.16)
invariant.

The isomorphism in Lemma 5.3 takes the induced action of G on E to the action of G on
J 2(T Y ). Therefore, the induced action of G on E leaves the connection ∇

′′ invariant.
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We will recall a property of a logarithmic connection which will be used.
Let V be a holomorphic vector bundle over X and F0 ⊂ Vx0 a subspace of the fiber over

x0 ∈ X . Let V ′ be the vector bundle defined by the exact sequence

0 −→ V ′
−→ V −→ Vx0/F0 −→ 0. (5.19)

Let ∇
0 be a logarithmic connection on V singular over the point x0. Then ∇

0 induces a
logarithmic connection on V ′ if and only if the residue

Res(∇0, x0) ∈ End(Vx0)

leaves the subspace F0 ⊂ Vx0 invariant. Assume that Res(∇0, x0) preserves subspace F0 ⊂

Vx0 . Let R0 (respectively, R1) be the endomorphism of F0 (respectively, Vx0/F0) induced by
Res(∇0, x0). The kernel of the homomorphism

fx0 : V ′
x0

−→ F0 ⊂ Vx0 (5.20)

of fibers (obtained by restricting the exact sequence (5.19) to x0) is identified with
(Vx0/F0)

⊗
`0, where `0 is the fiber over x0 of the line bundleOX (−x0). If ∇

1 is the logarithmic
connection on V ′ induced by ∇

0, then there is an isomorphism

T : F0 ⊕ (Vx0/F0) −→ V ′
x0

such that

(1) T (Vx0/F0) = (Vx0/F0)
⊗
`0 = kernel( fx0) (the homomorphism fx0 is defined in (5.20))

and T (w) = w ⊗ w0, where w ∈ Vx0/F0 and w0 is a fixed element in `0 independent of w;
(2) the homomorphism F0 −→ F0 induced by T is the identity map (the first condition implies

that T induces a homomorphism of quotients, and V ′
x0
/kernel( fx0) = F0);

(3) T ◦ (R1 + IdVx0/F0) = Res(∇1, x0) ◦ T on Vx0/F0 (this condition implies that Res(∇1, x0)

preserves kernel( fx0), and hence Res(∇1, x0) induces an endomorphism of the quotient F0);
(4) R0 = R′ on F0, where R′

∈ End(F0) is the endomorphism induced by Res(∇1, x0) (see (3)).

Using the above criterion it follows that the connection ∇
′′ on E induces a logarithmic

connection ∇̂ on γ ∗ J 2
D(T X). Since ∇

′′ is left invariant by the action of G on E we conclude
that the natural action of G on γ ∗ J 2

D(T X) leaves the logarithmic connection ∇̂ invariant.
Therefore, ∇̂ descends to a logarithmic connection ∇ on J 2

D(T X). From the above property
of the residue of the induced connection it follows that ∇ satisfy the residue condition (see
Definition 5.1 for residue condition). Furthermore, from the properties of the connection ∇

′ on
J 2(T Y ) described in Theorem 4.5 it follows immediately that the logarithmic connection ∇ on
J 2
D(T X) satisfies all the three conditions in the statement of the theorem.

For the converse direction, let ∇ be a logarithmic connection on J 2
D(T X) satisfying the

conditions in the statement of the theorem. Let γ ∗
∇ be the pulled back logarithmic connection

on the vector bundle γ ∗ J 2
D(T X) over Y .

Consider the kernel F ′
:= kernel( fx0) ⊂ V ′

x0
of the homomorphism in (5.20). Recall that the

quotient V ′
x0
/F ′ is identified with F0 ⊂ Vx0 . Let ∇0 be a logarithmic connection on V ′ singular

over the point x0. The connection ∇0 induces a logarithmic connection on the vector bundle V
in (5.19) if and only if the residue

Res(∇0, x0) ∈ End(V ′
x0
)

leaves the subspace F ′
⊂ V ′

x0
invariant. Assume that Res(∇0, x0) preserves the subspace F ′.

Let R0 (respectively, R1) be the endomorphism of F ′ (respectively, F0 = V ′
x0
/F ′) induced
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by Res(∇0, x0). If ∇1 is the logarithmic connection on V induced by ∇0, then there is an
isomorphism

T : F ′
⊕ F0 −→ Vx0

such that

(1) T (w) = w for any w ∈ F0;
(2) T (w ⊗ w0) = w for all w ∈ Vx0/F0, where w0 is a fixed nonzero element of the line `0 (so

w0 is independent of w, recall that F ′
= (Vx0/F0)

⊗
`0);

(3) T ◦ (R0 − IdF ′) = Res(∇1, x0) ◦ T on F ′;
(4) R1 = R′ on F0, where R′

∈ End(F0) is induced by Res(∇1, x0).

Using these properties of a logarithmic connection together with the given hypothesis that
∇ satisfies the residue condition it follows that the logarithmic connection γ ∗

∇ on γ ∗ J 2
D(T X)

induces a regular holomorphic connection on the vector bundle E constructed in (5.16). (To show
that a logarithmic connection is actually a regular connection, it suffices to show that the residue
at each singular point is zero.)

Let ∇
′ be the regular connection on E ∼= J 2(T Y ) induced by γ ∗

∇ (see Lemma 5.3 for the
isomorphism). The connection ∇

′ is evidently left invariant by the action of the Galois group
G on J 2(T Y ). Since ∇ satisfies the three conditions in the statement of the theorem it follows
immediately that the connection ∇

′ on J 2(T Y ) satisfies the three conditions in Theorem 4.5.
Therefore, using Theorem 4.5 the connection ∇

′ gives a G-invariant projective structure on Y .
This projective structure, being G-invariant, descends to an orbifold projective structure on X .

The two constructions, namely from logarithmic connections to orbifold projective structures
and vice versa, are inverses of each other. This completes the proof of the theorem. �

6. Differential operator associated to orbifold projective structures

In the first part of this final section we will assume that D is the zero divisor (= empty set).

6.1. The case of D = 0

Let W0 be a complex vector space of dimension two. In (4.3) and (4.9) we saw that

J 2(T P(W0)) ∼= P(W0)× H0(P(W0), T P(W0)) ∼= P(W0)× sl(W0)

with the isomorphism defined by restricting global vector fields to the second order infinitesimal
neighborhood of points of P(W0). Therefore, we have splitting of the exact sequence

0 −→ K ⊗2
P(W0)

−→ J 3(T P(W0)) −→ J 2(T P(W0)) −→ 0 (6.1)

in (2.1) that sends a global vector field to the third order infinitesimal neighborhood of points of
P(W0). More precisely, for any x ∈ P(W0) and v ∈ J 2(T P(W0))x , the homomorphism

J 2(T P(W0))x −→ J 3(T P(W0))x

giving the splitting of (6.1) sends v to the element in J 3(T P(W0))x obtained by restricting the
vector field on P(W0) corresponding to v to the third order infinitesimal neighborhood of x . The
splitting of (6.1) gives a homomorphism

J 3(T P(W0)) −→ K ⊗2
P(W0)

.
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This homomorphism defines a differential operator

D0 ∈ H0(P(W0),Diff 3
P(W0)

(T P(W0), K ⊗2
P(W0)

)) (6.2)

whose symbol is the constant function 1 (see (2.2)).
The local system on P(W0) defined by the sheaf of solutions of D0 (defined in (6.2)) is

identified with the local system defined by the flat connection on J 2(T P(W0)) given by its
trivialization in (4.9).

Let

z : P(W0) −→ C ∪ {∞}

be any globally defined holomorphic coordinate function on P(W0). So on z−1(C) any
holomorphic vector field is of the form f (z) ∂

∂z , where f is an entire function. The differential
operator D0 in (6.2) satisfies the identity

D0

(
f (z)

∂

∂z

)
=
∂3 f

∂z3 (dz)⊗2. (6.3)

It is easy to check that if D0 is of the above form with respect to some locally defined
holomorphic coordinate function z on P(W0), then z is the restriction of a globally defined
holomorphic coordinate function of the above type.

Now let Y be a compact connected Riemann surface equipped with a projective structure P .
Since the differential operator D0 in (6.2) is equivariant under the actions of GL(W0) on

T P(W0) and K ⊗2
P(W0)

, it induces a differential operator

DY ∈ H0(Y,Diff 3
Y (T Y, K ⊗2

Y )) (6.4)

in the following way.
Take any holomorphic coordinate function

ψ : Y ⊂ U −→ P(W0)

compatible with the projective structure P . The differential dψ identifies T U (respectively, K ⊗2
U )

with ψ∗T P(W0) (respectively, ψ∗K ⊗2
P(W0)

). So the differential operator D0 gives a holomorphic
differential operator

DU ∈ H0(U,Diff 3
U (T U, K ⊗2

U ))

over the open subset U ⊂ Y . Since D0 intertwines the actions of GL(W0) on T P(W0) and
K ⊗2
P(W0)

, these locally defined differential operators DU patch together compatibly to define a
globally defined differential operator DY as in (6.4).

Since the symbol of D0 is the constant function 1, it follows immediately that the symbol of
DY is also the constant function 1.

Since the local system defined by the sheaf of solution of D0 is identified with the local
system defined by the natural connection on J 2(T P(W0)), it follows that the local system on Y
defined by the sheaf of solution of the differential operator DY is identified with the local system
defined by the flat connection on J 2(T Y ) constructed in Proposition 4.2 from P . Indeed, this
is an immediate consequence of the fact that the connection on J 2(T Y ) in Proposition 4.2 is
constructed by patching together the connections on J 2(T U ) given by the natural connection on
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J 2(T P(W0)) using a coordinate function over U compatible with the given projective structure
P .

The operator DY determines the projective structure P . To reconstruct P from DY , take
holomorphic coordinate functions on Y such that DY is of the form (6.3) in terms of the
coordinate functions. Such coordinate functions are compatible with P , and hence P is
reconstructed using these coordinate functions.

6.2. The general case of D

Now we remove the assumption that D = 0.
Let P be an orbifold projective structure on X . Take γ : Y −→ X as in (3.7). The projective

structure P on X gives a projective structure P on Y which is left invariant by the action of the
Galois group G on Y (see the proof of Lemma 3.2).

So P gives a G-invariant differential operator DY as in (6.4). Such a differential operator DY
descends to a differential operator

DX ∈ H0(X,Diff 3
X (T X ⊗OX (−D), K ⊗2

X ⊗OX (D))). (6.5)

Indeed, this follows immediately from the fact that the sheaf on X defined by the G-invariant
local sections of T Y (respectively, K ⊗2

Y ) is identified with the sheaf defined by T X ⊗OX (−D)
(respectively, K ⊗2

X ⊗OX (D)); see the first two paragraphs in the proof of Lemma 5.3 as well as
the proof of the isomorphism in (3.8). Note that since DY is left invariant by the action of G, if s
is a locally defined G-invariant holomorphic section of T Y , then DY (s) is a G-invariant locally
defined holomorphic section of K ⊗2

Y .
The symbol of DX (defined in (6.5)) is a section of OX (2D); see the definition of symbol in

(2.3). Since the symbol of DY is the constant function 1, it follows that the symbol of DX is

1 ∈ H0(X,OX ) ⊂ H0(X,OX (2D))

(the section defined by the constant function 1).
The orbifold projective structure P is determined by the differential operator DX . To

reconstruct P from DX note that DX determines DY . Therefore, the projective structure P on Y
is determined by DX . Hence P is determined by DX .

The flat connection on X ′
= X \ D corresponding to the local system on X ′ defined by the

sheaf of solutions of the differential operator DX extends to a logarithmic connection on the
vector bundle J 2

D(T X) defined in (5.2). To prove this we first recall that the local system on Y
defined by the sheaf of solutions sheaf of DY corresponds to the flat connection on J 2(T Y ) for
the projective structure P; the connection was constructed in Proposition 4.2. Since DY descends
to X as DX , and the connection on J 2(T Y ) descends to the logarithmic connection on J 2

D(T X)
defined by P (see the proof of Theorem 5.2), we conclude that the logarithmic connection on
J 2
D(T X) constructed from P (constructed in Theorem 5.2) is an extension of the connection over

X ′ defined by the sheaf of solutions of DX .
Therefore, we have the following variation of Theorem 5.2.

Theorem 6.1. There is a natural bijective correspondence between the space of all orbifold
projective structures on X and the subset of

H0(X,Diff 3
X (T X ⊗OX (−D), K ⊗2

X ⊗OX (D)))

consisting of all differential operator DX such that
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(1) the symbol of DX is the section of H0(X,OX (2D)) given by the constant function 1 ,
(2) the flat connection on X \ D corresponding to the sheaf of solutions of DX extends as a

logarithmic connection on J 2
D(T X) over X, and

(3) this logarithmic connection on J 2
D(T X) satisfies all the conditions in Theorem 5.2.

6.3. Kernel of the differential operator

We will describe the section

K−1(DX ) ∈ H0(4∆, p∗

1(K
⊗2
X ⊗OX (D))⊗ p∗

2(K
⊗2
X ⊗OX (D))⊗OX×X (4∆)) (6.6)

corresponding to the differential operator DX (constructed in (6.5)) by the isomorphism K in
(2.6).

Identify CP1 with C ∪ {∞} by sending any c ∈ C to the line in C2 defined by (1, c). This
identification gives a meromorphic coordinate function on CP1 which will be denoted by z.

Take any holomorphic coordinate function

φi : Vi −→ Ui (6.7)

as in (3.6) compatible with the given orbifold projective structure P on X . Let ∆Vi ⊂ Vi × Vi be
the reduced diagonal divisor and

qi, j : Vi × Vi −→ Vi ,

j = 1, 2, the projection to the j-th factor. Over Vi × Vi consider the meromorphic form

ωi :=
(dz1)

⊗2
⊗ (dz2)

⊗2

(z1 − z2)4
∈ H0(Vi × Vi , q∗

i,1 K ⊗2
Vi

⊗ q∗

i,2 K ⊗2
Vi

⊗OVi ×Vi (4∆Vi )),

where (z1, z2) is the holomorphic coordinate function on Vi × Vi defined by z j (v1, v2) = z(v j ),
j = 1, 2.

Restricting this section to n∆Vi , n ≥ 1, we get a section

ωi,n ∈ H0(n∆Vi , (q
∗

i,1 K ⊗2
Vi

⊗ q∗

i,2 K ⊗2
Vi

⊗OVi ×Vi (4∆Vi ))|n∆Vi
).

Let ∆Ui ⊂ Ui × Ui be the diagonal. Using the covering map φi the section ωi on the
infinitesimal neighborhoods on ∆Vi descends to section

ω̂i ∈ H0(4∆Ui , (p
∗

1(K
⊗2
X ⊗OX (D))⊗ p∗

2(K
⊗2
X ⊗OX (D))⊗OX×X (4∆))|4∆Ui

)

(actually, we get sections over each n∆Ui , but here we are interested only in the section over
4∆Ui ).

To construct ω̂i first note that the section

(dz1)
⊗2

⊗ (dz2)
⊗2

(z1 − z2)4
∈ H0(CP1

× CP1, (K ⊗2
CP1 � K ⊗2

CP1)⊗OCP1×CP1(4∆CP1)) (6.8)

is invariant under the diagonal action of the Möbius group PSL(2,C). In particular, the earlier
defined section ωi is invariant under the diagonal action of the Galois group for the covering map
φi in (6.7). The diagonal ∆Vi ⊂ Vi × Vi is left invariant by the diagonal action of the Galois
group and the quotient is ∆Ui . Also, we saw that the sheaf on X defined by the G-invariant
local sections of K ⊗2

Y is identified with the sheaf defined by K ⊗2
X ⊗OX (D) (see the proof of the

isomorphism in (3.8)). Therefore, ωi descends to a section ω̂i , over 4∆Ui , of the above type.
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Since the section in (6.8) is invariant under the diagonal action of PSL(2,C), it follows
immediately that for another holomorphic coordinate function φ j : V j −→ U j as in (6.7)
compatible P , the two sections ω̂i and ω̂ j coincide over (4∆Ui ) ∩ (4∆Ui ) ⊂ X × X .

Consequently, these locally defined sections ω̂i patch together compatibly to define a
holomorphic section of the line bundle

L := p∗

1(K
⊗2
X ⊗OX (D))⊗ p∗

2(K
⊗2
X ⊗OX (D))⊗OX×X (4∆) (6.9)

over 4∆ ⊂ X × X .
Let SP denote this section of L over 4∆ constructed from the projective structure P . We will

show that SP coincides with the section K−1(DX ) in (6.6).

To prove this, first consider the section (dz1)
⊗2

⊗(dz2)
⊗2

(z1−z2)
4 in (6.8) over CP1

× CP1. The
restriction of this section to 4∆CP1 is actually the kernel of the differential operator D0 over
CP1 constructed in (6.2); here ∆CP1 is the diagonal in CP1

× CP1. Indeed, this is an immediate
consequence of the local expression of D0 given in (6.3). Since DX is constructed from D0
using coordinates compatible with the given projective structure P , we conclude that the section
K−1(DX ) in (6.6) coincides with SP .

We will list properties of the section K−1(DX ) defined in (6.6).
Using the Poincaré adjunction formula, the restriction to ∆ of L (defined in (6.9)) is

identified with the line bundle OX (2D) after identifying ∆ with X . Since the symbol of the
differential operator DX is 1 ∈ H0(X,OX (2D)) (see Theorem 6.1), from the description of
symbol given in (2.7) it follows immediately that the restriction of K−1(DX ) to ∆ is given by
1 ∈ H0(X,OX (2D)).

Let

τX : X × X −→ X × X

be the involution defined by (x, y) 7−→ (y, x). The pullback τ ∗

XL is canonically identified with
L (defined in (6.9)). Indeed, this is an immediate consequence of the fact that τX leaves the
diagonal ∆ invariant. In other words, the involution τX lifts naturally to L.

The section SP of L defined over 4∆ is left invariant by τX (the involution leaves 4∆
invariant). This follows immediately from the fact that the section in (6.8) over CP1

× CP1

is left invariant by the involution of CP1
× CP1.

Let U ⊂ X × X be an analytic open subset with τX (U ) = U , and let f be a holomorphic
function defined over U such that f = f ◦ τX . Then the order of vanishing of f on the divisor
∆ ∩ U ⊂ U must be even. Consequently, a τX -invariant holomorphic section over U of the line
bundle L (defined in (6.9)) vanishing of order at least 2k − 1 over ∆ ∩ U must vanish of order at
least 2k over ∆ ∩ U , where k is an integer.

Therefore, if s and s′ are two sections of L over 4∆ such that

(1) both s and s′ are left invariant by the action of τX on the line bundle,
(2) s|3∆ = s′

|3∆,

then s = s′. In other words, any τX invariant section of L over 3∆ extends uniquely to a τX
invariant section of L over 4∆. So the section SP over 4∆ is determined by its restriction to 3∆.

Take any point ζi ∈ D. Let

ι : X −→ X × X
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be the inclusion defined by x 7−→ (x, ζi ). We have

ι∗XL = K ⊗2
X ⊗OX (5D)⊗ ξ0, (6.10)

where ξ0 is the trivial line bundle over X with fiber (K ⊗2
X

⊗
OX (D))ζi .

Let s ∈ H0(3∆,L) be a holomorphic section over 3∆ which is invariant under the involution
τX . Set

βs := ι∗(s) ∈ H0(3ζi , ι
∗L) (6.11)

over the nonreduced divisor 3ζi ⊂ X , where ι is defined above.
Note that if we used the embedding x −→ (ζi , x) instead of ι, then the fact that both L and s

are invariant under the involution τX implies that the section in (6.11) remains unchanged.
Assume that βs in (6.11) vanishes at ζi of order two. In view of this assumption, using (6.10)

it follows that βs is a section

βs ∈ H0(3ζi , K ⊗2
X ⊗OX (3D)⊗ ξ0).

Since OX (D)ζi = Tζi X (the Poincaré adjunction formula), the fiber over ζi of the line bundle
K ⊗2

X ⊗OX (3D)⊗ ξ0 is identified with C. Hence we have

βs |ζi ∈ C. (6.12)

Now set s to be the section SP |3∆, where SP is the holomorphic section of L over 4∆
constructed using the projective structure P . Since SP is invariant under the involution τX , and
the symbol of the differential operator DX vanishes at ζi of order two (see Theorem 6.1), we
conclude that SP satisfies all the above conditions on s.

Using the fact that the logarithmic connection on J 2
D(T X) defined by the sheaf of solutions

of the operator DX in (6.5) satisfies the residue condition (see Definition 5.1, Theorems 5.2
and 6.1) it follows that βS(P)|ζi in (6.12) is 1/$(ζi ). The eigenvalue of the eigenvector Gζi in
Definition 5.1(1) coincides with βS(P)|ζi .

Combining the above observations we have the following theorem.

Theorem 6.2. There is a natural bijective correspondence between the space of all orbifold
projective structures on X and the space of all sections

s ∈ H0(3∆, p∗

1(K
⊗2
X ⊗OX (D))⊗ p∗

2(K
⊗2
X ⊗OX (D))⊗OX×X (4∆))

over 3∆ ⊂ X × X satisfying the following conditions

(1) the section s is invariant under the involution of X × X,
(2) the restriction of s to ∆ coincides with the section of H0(X,OX (2D)) given by the constant

function 1 (after identifying ∆ with X),
(3) βs |ζi ∈ C in (6.12) is 1/$(ζi ).

Let

s, s′
∈ H0(3∆, p∗

1(K
⊗2
X ⊗OX (D))⊗ p∗

2(K
⊗2
X ⊗OX (D))⊗OX×X (4∆))

be two sections satisfying only the first two of the three conditions in Theorem 6.2. Therefore,
s − s′ vanishes on ∆ and it is invariant under the involution of X × X . As we saw earlier, these
imply that s − s′ actually vanishes on 2∆. Therefore,

s − s′
∈ H0(X,OX (2D)⊗ K ⊗2

X )
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after identifying ∆ with X (and using the Poincaré adjunction formula). Using the Poincaré
adjunction formula the fiber of OX (2D)

⊗
K ⊗2

X over any ζi ∈ D is identified with C. It is easy
to see that

(s − s′)(ζi ) ∈ C

coincides with βs |ζi − βs′ |ζi ∈ C, with β as in (6.12). Therefore, if s and s′ also satisfy the third
condition in Theorem 6.2, then the section s − s′ ofOX (2D)

⊗
K ⊗2

X vanishes on D. In that case,
we have

s − s′
∈ H0(X,OX (D)⊗ K ⊗2

X ).

Conversely, any α ∈ H0(X,OX (D)⊗ K ⊗2
X ) gives a section

α′
∈ H0(3∆, p∗

1(K
⊗2
X ⊗OX (D))⊗ p∗

2(K
⊗2
X ⊗OX (D))⊗OX×X (4∆)).

If SP is a section as in Theorem 6.2 corresponding to an orbifold projective structure P
on X , then s + α′ defines an orbifold projective structure using Theorem 6.2. This way,
the space of all orbifold projective structures on X is an affine space for the vector space
H0(X, OX (D)

⊗
K ⊗2

X ). This is a reformulation of Lemma 3.3.
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